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Abstract

A set of general sequential filter equations is
derived for nonlinear system dynamics and a non-
linear observation model, but is obtained with the
assumption of a linear estimator. These equa-
tions, which are based upon previously developed
formulas, include the colored measurement noise
statistics and the statistics of nonestimated model
parameter errors. Several simulations made with
this filter are compared with the simulation
results of an estimation procedure constructed
with the utilization of the standard white noise
assumptions. The difference between the white
noise filter results and the colored noise filter
results is found to be minimal. Instability occur-
red when the statistics of the effective exhaust
velocity in the acceleration model wcre nut proper-
ly accounted for.
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L Introduction

During radio-guided launch missions, the
angle measurement noise of the guidance radar
becomes increasingly bothersome as the radar
line-of-sight tends toward low elevation angies.
Significantly, a greater portion of the launch
guidance has been occurring at low elevationangles
as a consequence of the more intensive use of
larger boost vehicles, which have become avai-
lable to place heavier payloads in orbit. The
bothersome component of the angle measurement
noise is due to random fluctuations in the tropo-
spheric index of refraction. These fluctuations
are most noticeable in the denser portion of the
atmosphere and are directly attributable to the
random nature of temperature, pressure, and
humidity variations. These variations are slower
and more severe in the low-altitude regions and
thus affect not only the magnitude but also the
autocorrelation of the angle exrrors when the radar
euergy traverses these regions. In fact, angle
noise correlation times of several seconds are
common at radar elevation angles of a fewdegrees.
In addition, the present trend in guidance filter-
ing has been toward more intensive use of Kalman
filtering techniques. Since filters of this type
require that the measurement noise characteristics
be modeled, it is appropriate to investigate the
behavior of such filters when various assumptions
are made concerning the noise correlations.

Error sources other than measurement noise
affect the guidance filter behavior and are of )
prime concern in a radio-guided launch mission.
A filter constructed to minimize the effects of
measurement noise will itself introduce errors
into the estimate that arise from inaccuracies in
specifying the mathematical model of the system.
These modeling errors reflect the limits inhuman
ability to describe the real world in exact mathe-
matical terms. Errors of this sort can have an
accumulative effect over a period of time and can
cause the estimate to diverge. It is assumed for
the purposes of this paper that the mathematical
form of the system model is known or can be
adequately represented by some series expansion;
however, the values of certain parameters of the
model are in error. This assumption differs
significantly from the situation where the mathe-
matical form itself {s uncertain. Examples of
model parameter uncertainties are survey uncer-
tainties, measurement bias errors, and para-
meter errors such as the uncertainty in the
numerical value of the gravitational constant,

In this paper a derivation is given of a general
sequential filter which utilizes the differencing
scheme of Refs. 1 and 2 to account for sequentially
correlated noise. Nonestimated model parameter
uncertainties in both the state dynamic model and
the measurement model are accounted for in the
derivation.

The various features of the general filter
were programmed in a simulation of a launch
guidance mission and the results are given here.
The primary purpose of the simulation was to
examine the behavior of the general filter and to
determine whether its performance was such as to
warrant an increase in the complexity of existing
guidance programs.

II. The Optimum Filter

Before proceeding into the mathematical
details of the derivation, a qualitative description
of the filter will be given to help in visualizing the
filtering process in the presence of correlated
measurement noise and model parameter errors.
An optimum linear sequential filter operates on
data samples that are available at discrete values
of time. Its output at a particular time is an esti-
mate of the system state based on all information
available up to that time. A block diagram of a
sequential filter is shown in Fig. 1. It is optimum
in a least squares or minimum variance sense,
providing that the Gaussian and linear propagation
properties of the errors hold; and it is linear
because the estimates are formed from a linear
combination of the observation data.

Fig. 1, Sequential Filter Block Diagram

At the beginning of each computation cycle
there are available an estimate of the state vector
and a covariance matrix of errors in the estimate.
Also input at this point are a set of measurements
and a covariance matrix of measurement errors.
These data -- tne state estimate and the measure-
ment set -- are weighted according to the relative
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magnitude of their respective covariances, data
with larger covariances being weighted less than
those with smaller covariances, and are appro-
priately transformed to form a new state vector
estimate. Next, a new state vector estimate error
covariance matrix is computed by propagating the
previous state vector estimate error covariance
matrix and the measurement error covariance
matrix through the filtering equations. Finally,
the state vector estimate and the state vector
estimate error covariance matrix are propagated
to the beginning of the next computation cycle by
the filter dynamic and error propagation models,

Consider now the situation where the mea-
surement noise is highly correlated, as would be
the case in low-elevation radar tracking. The
estimate errors will be correlated with the
measurement noise through previous measure-
ments. A filter based on white noise assumptions
will ignore this fact and improperly propagate the
covariance matrices, consequently causing im-
proper weighting of the data. For example, sup-
pose that the range from a radar to a fixed point
were to be determined from range measurement
samples and that these measurements possessed
noise with long-term drift characteristics., A
white noise filter would treat the measurement
noise as being statistically independent from
sample to sample with a statistical mean that
tended toward zero as the number of samples
increased, when in actuality the measurement
error would behave more as a bias if the total
time span under consideration is short.

One means of accounting for the presence of
colored noise is to augment the state vector to
include the states of a hypothetical shaping filter
whose input is white noise and whose output is
noise of the required correlations. This approach
is often prohibitive primarily because of computer
storage limitations, since for each increase in the
state vector dimensions there is a corresponding
increase in the dimensions of the state covariance
matrices and in the complexity of the ensuing
matrix arithmetic. Also, the state augmentation
scheme can result in ill-conditioned matrices(1),
A second method which utilizes a measurement
differencing technique(l) (2) yeduces the imple-
mentational difficulties associated with state aug-
mentation and at the same time alleviate the
threat of matrix inversion problems. Because of
these advantages, the second method was used in
the launch guidance simulation. Recently, a third
method was developed which does not depend upon
state augmentation or measurement differencing.
It was, however, developed too late to obtain
results for the paper, and hence will be discussed
in a subsequent report(s).

Basically, there are three ways in which the
model parameter errors can be accounted for in
the estimation process. First, they can be ig-
nored completely. In this case the state vector
estimate error covariance matrix, since it will
not show the effect of propagating the parameter
errors, will be smaller than it should be. Conse-
quently, the state vector estimate that is present
at the beginning of each computation cycle will be
weighted more and the measurements weighted
less than if the effects of the parameter errors
were accounted for.

Secondly, the parameters can be estimated
along with the rest of the state vector elements in
hopes of driving the bothersome errors to smaller
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values. In any event, the parameter error co-
variances will be included in the state vector
estimate error covariance matrix and will hence
influence the computation of the filter weights.
That is, even if the parameter uncertainties are
not reduced, they will be accounted for in the
filter error analysis.

A third way to account for the model para-
meter uncertainties is similar in some respects
to the second method. In this method the error
covariances of the parameter errors are included
in the filter covariance matrix propagations(4),
but unlike the second method the parameters are
not solved for, and thus the parameter errors
never decreasc. The procedure is equivalent to
the situation where the parameter is solved for
as in the second method but where poor parameter
estimates are obtained. Attempts have been made
to approximate this third ‘approach by the addition
of an artificial "state noise" covariance matrix to
the state error covariance matrix once during
each computation cycle. Although such an ap-
proach is not a systematic one, it is obviously
better than ignoring the parameter errors as the
first method does since it prevents the state error
covariance matrix from becoming too small,
Nevertheless, the correlation between the state
eatimate error and the parameter error is ignored
inasmuch as the state noise approach is based on
the assumption of white noise parameter errors.

Ol _Derivation of the General Filter

Let the state dynamics be described by

xn = q)(xn-l' P’“’n) m

and the relation of the measurement to the states by

z, = h(Xn, T) + Nn (2)

Let the measurement noise be generated by the
Markov process

(3)

The filter dynamic model is assumed to be of
the form

A
Rinar = ¥Ry e B )
and the filter measurement model of the form
A
bo=nk 0D (5)

Let the measurements be differenced to give
an effective measurement

cn e -PE (6)
The measurement estimate is
R T ST IR PRI )
= l"n()"(n-lin-l' 'i‘) ™
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Assume that the state vector estimates are
obtained from a linear filter of the form

*n/n = *n/n-l + Kntgn - %1

The error in the estimate is

(8)

akn/n -X_ - kn/n = Gin/n-l - xnstn <)

where

6f‘n/n-l =X, - % (10)

o=, - &,

The filter described by the above equations is
shown in the block diagram of Fig. 1.

By the Wiener-Hopf Equation (see Appendix)
the filter gain is obtained as

n/n-1

(11)

- T T
K, = Eb%, . s 1{EG L s 4 (12)
To obtain an explicit expression for Kn it is first
necessary to expand Eq. (10). Thus
A
6,y = X, pop) -0k 0 LB (13)

which, if one assumes that the estimate is within
a linear expansion of the state, becomes

A A A
GXn/n-l =9 xn-l/n-l +DOp 4Ny (14)

Similarly, Eq. (11) can be written as

%,

A
(H $- pH l)ex +Hnmp

n-1/n-1
A
+ AT + Hnl‘un + qwn

A A
+HnDbp + AST + Hnl'u.n +qwW
(15)

A
= Haéxn- 1/n-1

After one uses Eqs. (14) and (15) in Eq. (12), and
performs the indicated expected values, K can
be determined from

T,T

E(BXn/n g =ep  HI+ev_ D H,
T T T
+4L, AT +DV_ | H

+DsDTH! +rarT uT

(16)

and

T T T
HP, _|H +qRq" +Hrar

E{bﬁnbﬁ;fl =
T T pTyT

H +HV

+ Hann 177 -1 n

T,T T T T
+H DSD H; +AL, | H +HL A

+ ABAT an

where

_ T T,T
= (#-K H )P, (#-K H)" +KqRq K/

T T
+ (I-Kan)l"Ql' (I-Kan)
T T
+ (K-Kan)DSD (I-Kan)
T T
D (I-Kan)

+ (Q-KnH )Vn i

+(I-K H )DV 1(6 K H )

T
+KnABA K - (- KnH ) A Kn

(18)

-KAL (Q-KH)

- K
n

= (2-K H )L | AB (19}

= (¢ 'KnHa)vn-l + (I-Knﬂn)DS (20)

Equations (16) through (20) along with Eq. (12)
constitute the general sequential filter.

IV. Application of the Filter

In radio~-guided ascent missions a tracking
radar measures the position and/or velocity of the
launch vehicle (see Fig, 2). These measurements
are processed by a guidance computer to obtain
an estimate of the vehicle state. The computer
determines, according to a programmed guidance
law, what vehicle stecring is necessary to satis-
fy the mission regquirements; and steering com-
mands are transmitted to the vehicle via the
guidance radar link. In addition, the radar trans-
mits discrete commands such as engine cutoff as
soon as the computer determines the necessity of
such events.

A simulation of a typical launch guided mis-
sion was constructed, as shown schematically in
Fig. 3, in which a vehicle was guided during its
last two stages. The purpose of the simulation
was to assess the performance of the general se-
quential filter in a simulated radar noise environ-
ment, and in the presence of uncertainties in both
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Fig. 2. Launch Guidance Radar System
the filter state model parameters and filter mea-
surement parameters, The vehicle was assumed
to be guided perfectly, hence the state vector in
the simulation was independent of the filter esti-
mates. The performance factors were the com-
puted residuals of the state estimation error and
the computed state estimation error covariance
matrix. A position radar measuring range, azi-
muth, and elevation was simulated. The simula-
tion error model added random noise to the simu-
lated measurements which possessed the following
one-half second correlations:
range noise correlation = 0,1
azimuth noise correlation = 0.95
elevation noise correlation = 0,97
The estimated state was a 12-element vector con-
sisting of the following quantities:
x,¥,Z - & 3-element ECI Cartesian
position vector
x,y,% - a 3-element ECI Cartesian
velocity vector
c* - effective engine exhaust velocity
tm - engine mass depletion time
i_ - x-component of a roll axis oriented
unit vector
i_ - z-component of a roll axis oriented
unit vector
ﬂx - pitch axis drift rate
ny - yaw axis drift rate
The following 7 simulations were performed:
#. The filter error model was based on an
assumption of white measurement noise
(white noise filter). The simulation
error model generated measurement
noise with the correlations given above,
W e

SIMULATION
VENICLE
DYNAMICS
MOOEL

X, STATE  |SIMULATION

SIMULATION
ERROR
MODEL

SIMULATED RADAR MEASURENTS

seg::.t‘r.‘itl'“ == @3, STANDARD DEVIATIONS ‘

R, STATE VECTOR ESTIMATE
‘ 83, ESTIMATION ERROR .

Fig. 3.

2, ERROR - FREE RADAR
MEASUREMENTS

Simulation Block Diagram

b. The filter error model was based on an
assumption of correlated measurement
noise with the correlations given above
(colored noise filter), The simulation
error model generated measurement
noise with these same correlations.

c. The filter was a white noise filter, and the
simulation error model generated bias
errors onlv,

d. The filter error model was based on an
assumption of measurement bias errors,
and the simulation error model generated
bias errors only,

e, The filter was a white noise filter, the
simulated radar measurements were
error-free, and c* was omitted from the -
estimated state vector. No compensa-
tion for c* uncertainties was attempted.

f. The filter was a white noise filter and the
simulated radar measurements were
error-free. c* was included in the esti-
mation vector.

g. This simulation was identical with simu-
lation e except that the c* error statis-
tics were included in the filter equations.

V. Results

Typical results of the first simulation (the
white noise filter) are given in Fig. 4a and can be
compared with the results of the second simula-
tion (the colored noise filter) given in Fig. 4b.
Both figures show the x-components of the velocity
cstimate residuals. In the same plots the x-
velocity standard deviation envelopes obtained
from the state estimate error covariance matrix
of the filter are also shown., Comparison of the
white noise filter velocity residuals of Fiz. 4a
with the velocity residuals of the colored noise
filter in Fig. 4b show that, although there is an
improvement in the estimate, the improvement is
small, because the average deviation of the resi-
dua) about the sero mean value is about the same
in both simulations. There is, for example, only
about & 2 ft/sec difference in the velocity residual
at burnout, The filter value of the estimate error
standard deviations as shown by the standard
deviation envelopes, however, is larger in the
colored noise case and is more representative of
the estimate errors.




A

i
¢

K7

X-veLocity

1

{

16— ) :

-zoJlllil;llLJ_J'

0 20 40 6 680 00 120 (40 160 180 200 220
TIME , sec

Fig. 4a, Velocity Residual, White
Noise Filter

8 STANDARD DEVIATION 1\ '
i / ENVELOPE AN
' \

)

!

|

t

X-VELOCITY COMPONENT , fi/sec
>

ol L L L 1 (0 1 1 1
0 20 40 60 80 (00 120 140 160 180 200 220
TIME, sec

Fig. 4b, Velocity Residual, Colored
Noise Filter

The results of simulations c and d showing
the effects of measurement bias errors on the
output of the white noise filter and the bias filter
are given in Figs. 5a and 5b. A small difference
can be seen between the white noise filter results
and the bias filter results, The computed stand-
ard deviations were larger when the bias filter
was used as illustrated by the larger valuea of the
envelope.
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Fig. 5b, Velocity Residual,
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Figures 6 and 7 show the results of the simu-
lation e in which c* was omitted from the state
estimation vector and the c* uncerta.nties were
ignored, Figure 6 shows that the filter velocity
estimates become unstable after only about 60 sec.
The filter gains plotted in Fig., 7 are the gains
relating the position estimates to the transformed
radar measurements; the radar measurements
are transformed into the same coordinates as the
state vector position components. The gains in




v
o

5 L ine IR SR

o

Fig. 7 become less than 0, 4 after the first 10 sec
of filtering which implies that the a priori esti-
mate -- the state estimate present at the beginning
of sach computation cycle -- receives a greater
share of the weighting than do the measurements.
The somewhat wild behavior of the gains during
the second stage is attributed to the unstable
behavior of the astimates that are used to evaluate
the partial derivatives which, in turn, affect the
gain computations.
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Figure 8a shows the results of simulation f in
which c* was estimated, and Fig, 8b shows the

remmmem

results of simulation g in which c* was not esti-
mated but the c* errors accounted for. The posi-
tion, velocity, and attitude estimate residuals are
nearly the same in both simulations. Note that the
filter position gains of Fig. 9b are always greater
than those of Fig. 7 during the first stage demon-
strating that the inclusion of the c* statistics in
the filter results in greater weighting of the mea-
surements than when they are ignored. The gains
of Fig. 9b also lie above those in Fig. 9a. Sincc
the c* estimate error decreased with time in the
simulation whose results are shown in Fig. 9b,
they therefore had a smaller effect when the state
estimate was propagated, This error decrease is
implicitly accounted for in the filter equations in
the covariance matrix computations.
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V1L Conclusions

The simulation results indicate, as would be
expected, that the colored noise filter perfor.
mance in a colored noise environment is superior
to the performance of a white noise filter in the
same noise environment since the colored noise
filter estimation errors are smaller, However,
the degree of improvement is minimal, and in a
practical sense, the improvement would not war-
rant the increased complexity of the guidance
equations., Similarly, the bias filter does not,
for this application, exhibit enough performance
improvement to justify its implementation.

State vector estimates which do not contain c*
as one of its elements can be satisfactorily ob-
tained if the c* error statistics are properly
accounted for in the {ilter squations. Some form
of compensation for the omission of this paramster
from the estimate is mandatory if the filter is to
remain stable.

In general, the results demonstrate how cau-
tion must accompaay the desire for optimality in
a practical application of theoretical results. It
also demonstrates how the optimal approach, when
used as an analysis tool, provides useful goals or
limitations upon which a practical design can be
based,

Appendix
The Wiener-Hopt Equation

Define the inner product of two real valued
vectors a and b to be

<a, > wX] E (ab7) X, (A-1)

where a is an n-vector and b is an m-vector. Let
be any real n-vector and X; any real m-vector
u}ch that

XIC Xzforu<m
XIDXzform<n

xl=xzform=u

An inner product of two real vectors must
satisfy

a. <aX +8y, 2> = a<X, 2>+8B<y, 2
where o and B are real scalars.
b. <X, X>20;<X, X>=02X =

Satisfaction of condition a by Eq. (A-1) is easily
demonstrated. Condition b merely states, for the
inner product defined, the positive-definite pro-
perty of a covnrunce matrix,

The vector 8X of Eq. (9) in the text is the
estimation error a Wreprenents the additional
information required to specify the state exactly.
The vector 6£R represents the information, in
addition to thit obtained from paat d ta. provided
by the most recent observation. /n is
optmul estimate in a least aquaren senne, 5£:/n
is orthogonal to 8{ ; i. e.,

A A
<6xn/n' 5Qn> = 0 (A-2)
But if
T T _
Xl E(ab ))(z =0
for all xl and xz. then
E (abT) =




80 that
E'*u/not::“ =0

: - eto - kgl < o

if one solves for K, the Wiener-Hopf Equation is
obtained as

A a -1
K, = Bk, ., 01| 20D

i A

i

Symbols and Abbreviations
X = * X = *

s
PRCRA S s

- n/n-1 - n/n-1

N A5yl 4™ cogrlo. g
! B » E3tetT)
¢ X = *
‘ d n/n-1

D-33lp b
' E = the expectation operator
1
i
N =
k H, = Hn.'pnn-l
: &
; X=X
; _d3h n/n-1
E Hn = ﬁl T= t
Kn = the filter gain matrix

T
L, = BB}  oT)
n = subscript associating variable with the ntb
time point

n/n-1 = subscript indicating that the variable is
evaluated at the n* time point and is
based upon measurements up to and
including the (n-1)st

Nn z vector of measurement noise
p = dynamic model parameter vector
;: = an estimate of p
A Iy
ép=p -p
T
Q = Efu )
R = EW WT]
an
s = EspepT)

T = measurement model parameter vector

* = an estimate of T

ed=1.¢

AT
v, . E[aﬁn/n )

wn = a white noise vector
xu = the state vector

= the estimate of the state vector at t,
given all measurements up to and
including that at Y

n/i

z, = the measurement vector

CA = effective measurement after differencing

eh = ost ted effective measurement computed

from n/n-1

by = white process noise vector

x=%
- n/n-1
T'gflp”‘,

p = correlation coefficient matrix representing the
correlation between N n and N

%lx =‘£nln-l
P=pP .
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